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  Introduction 

 The direct effects of vaccination generally refer to the 
direct protection of the vaccinated individual, result-
ing in a reduced chance of infection and possibly com-
plications. In contrast, the indirect benefi ts of vaccination 
refer to protective effects observed in unvaccinated 
populations [1]. This indirect effect of vaccination is 
known as the herd effect or  ‘ herd immunity ’ , defi ned 
as the indirect protection of unvaccinated persons, 
whereby an increase in the prevalence of vaccine-
immunity prevents circulation of infectious agents in 
unvaccinated susceptible populations (Figure 1). 

 The importance of herd immunity was fi rst rec-
ognized with smallpox, where the initial goal was to 
immunize 80% of the population in order to achieve 
such a herd effect. Although the ultimate eradication 
in 1977 was achieved with higher vaccine uptake rates, 
the herd effect contributed to the reduction of small-
pox by a mass vaccination programme that focused 
on endemic countries [2]. Another important aspect 
of the herd effect is that it can play a key role in 
determining policy if it enhances cost-effectiveness. 
In the USA, it was estimated that the introduction 

of the quadrivalent meningococcal conjugate vaccine 
saved US $ 551 million in direct costs and  $ 920 million 
in indirect costs, including costs associated with per-
manent disability and premature death [3]. Childhood 
pneumococcal vaccination is another example; the 
7-valent pneumococcal conjugate vaccine was estimated 
to prevent 38,000 cases of invasive pneumococcal 
infection in the USA during its fi rst 5 y of use at a 
cost of US $ 112,000 per life-y saved. However, the 
vaccine prevented 109,000 cases of invasive pneu-
mococcal infection at a cost of  $ 7500 per life-y saved 
when the herd effect was considered [4]. In the sec-
tions below, we review the experience of vaccina-
tion programmes and clinical trials in establishing a 
herd effect.   

 Herd effects in Haemophilus infl uenzae 
type b vaccination 

 Vaccination against invasive Haemophilus infl uenza 
type b with the conjugate vaccine began in high-income 
Scandinavian countries and resulted in a decline in 
invasive H. infl uenzae type b diseases in the vaccinated 
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populations (0 – 4-y-olds: 49/100,000/y in 1986 to 
0/100,000/y in 1996) with  ∼ 95% effectiveness [5]. 
With a vaccine uptake of 50%, a herd effect appears to 
have occurred, as the reduction in invasive H. infl uen-
zae type b disease was also observed in unvaccinated 

older children ( � 5 y) in Finland after the introduc-
tion of the H. infl uenzae type b conjugate vaccine in 
1986 (Figure 2).   

 Herd effects in pertussis vaccination 

 After the availability of pertussis vaccine in the 1940s, 
the introduction of pertussis immunization pro-
grammes with pertussis toxoid resulted in a sharp 
reduction in pertussis, not only among vaccinated 
infants, but also among non-vaccinated infants and 
older populations. For example, in a prospective 
study performed in Sweden, where the vaccine was 
only available after 1995 following an interruption of 
16 y, there was a reduction in Bordetella pertussis 
isolation among non-vaccinated infants (1214 iso-
lates between 1993 and 1995 to 64 isolates between 
1997 and 1999;  p   �  0.0001). Moreover, pertussis-
related hospitalization was reduced from 55 cases to 
8 (population size 778,597) during the same time-
periods ( p   �  0.0001) in the setting of an infant per-
tussis toxoid vaccine uptake of 56% [6]. It is of interest 
that herd protection after mass immunization even-
tually can wane over time, particularly where the immu-
nogenicity of the vaccine does not allow for sustained 
antibody protection over time. This was evidenced by 
an outbreak of pertussis in Canada in 1990 – 1998 caused 
by a poorly protective whole cell vaccine [7]. 

 It is sobering to note that after 30 y of intensive 
childhood immunization, there has been a recent re-
emergence of adult pertussis, resulting in an increased 
risk of mortality in younger children [8]. The re-
emergence of adult pertussis is likely due to a variety 
of factors, including waning vaccine immunity with-
out a natural booster effect from household exposure, 
the loss of vaccine effi cacy due to novel strains, and 
potentially also due to increased detection due to more 
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  Figure 1.     Schematic presentation of the herd effect: The index patient 
transmits an infectious agent to a given number (basic reproductive 
number  R  0 ) of susceptible persons in the community. Black circles 
are infected persons and white circles are uninfected susceptible 
persons (panel A). After a mass immunization programme in the 
community (panel B), a proportion of the population is immunized 
(grey circles with  ‘ I ’ ), thus directly protected from the infectious 
agent (direct effect). The immunized individuals further protect the 
susceptible population (white circles with  ‘ H ’ ) by stopping the trans-
mission within the social networks. This extra protection effect 
provided by a vaccine is called  ‘ herd immunity ’ .  
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Figure 2. The vaccine herd effect on Haemophilus infl uenzae type 
b diseases in Finland after introduction of the Haemophilus infl uenzae 
type b conjugate vaccine in 1986 (adapted from Peltola et al. [5]).
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sensitive diagnostic tests [9]. Reduced immunity among 
mothers has been particularly worrisome, as it has led 
to less effective transplacental immunity, increasing 
the vulnerability of young infants [10]. 

 The majority of pertussis-related deaths occur in 
infants aged  �  3 months, thus a series of vaccinations 
is now recommended for children (2, 4, 6, 15 – 18 months, 
and 4 – 6 y in the USA [11] and Canada [12]). Using 
a polymerase chain reaction, culture, and serological 
examination, an observational study demonstrated 
that the likely source of infection in infants was sib-
lings (41%), mothers (38%), and fathers (17%) [13]. 
Therefore, to better protect infants through the herd 
effect, a programme of booster pertussis vaccination 
with decennial tetanus toxoid, has been implemented 
in adults. The reduction of laboratory-confi rmed 
pertussis in adolescents and adults by a booster adult 
vaccination was supported by a placebo-controlled 
randomized trial of acellular pertussis vaccine con-
ducted in 2781 healthy adolescents and adults, show-
ing a vaccine effi cacy of 92% (95% confi dence interval 
(CI) 0.32 – 0.99) [14]. Although evidence for the herd 
effect due to decennial administration of acellular 
pertussis vaccine in young adults leading to a reduc-
tion in B. pertussis mortality in children is not yet 
available, this programme is recommended in many 
countries [15].   

 Herd effects in pneumococcal vaccination 

 Streptococcus pneumoniae causes both invasive (i.e. 
blood stream and other sterile sites) and non-invasive 
infection, such as community-acquired pneumonia. 
The burden of pneumococcal disease is high and is 
associated with signifi cant morbidity and mortality. 
An estimated 1.6 million people, especially children 
aged  � 5 y, die of invasive pneumococcal disease annu-
ally worldwide [16], thus prevention of this disease 
is of great importance. In addition, the optimal anti-
biotic therapeutic choices are restricted due to increas-
ing resistance; therefore vaccines offer a potentially 
effective means to reduce invasive infections due to 
resistant strains. Currently there are 2 types of pneu-
mococcal vaccine available: pneumococcal polysac-
charide vaccines for adults and pneumococcal conjugate 
vaccines for children. 

 The effi cacy of the pneumococcal polysaccharide 
vaccine was fi rst identifi ed in young African gold min-
ers in 1977 [17]. Based on these data, and data from 
similar studies, the World Health Organization has 
recommended pneumococcal polysaccharide vaccine 
for people aged  �  65 y and those at increased risk of 
pneumococcal disease since the early 1980s. However, 
more recently there has been considerable debate 
about the effi cacy and effectiveness of the 23-valent 
pneumococcal polysaccharide vaccine in this elderly 

population [18]. Although the pneumococcal poly-
saccharide vaccine prevents invasive pneumococcal 
disease (odds ratio (OR) 0.26, 95% CI 0.15 – 0.46), 
there is no evidence that it prevents all-cause pneu-
monia [19]. Moreover, another recent systematic review 
has questioned the effi cacy of the pneumococcal poly-
saccharide vaccine in preventing pneumococcal pneu-
monia among the currently indicated populations (risk 
ratio (RR) 1.04, 95% CI 0.78 – 1.38) [20]. 

 Evidence exists that the elderly have indirectly 
benefi ted from the introduction of the pneumococcal 
conjugate vaccine in children. The US Centers for 
Disease Control and Prevention Active Bacterial Core 
Surveillance (1996 to 2001) demonstrated a reduction 
in invasive pneumococcal disease in those aged  � 65 y 
after the introduction of the 7-valent pneumococcal 
conjugate vaccine, despite the fact that this popula-
tion did receive the vaccine (Figure 3) [21]. Therefore, 
increasing the coverage of childhood pneumococcal 
conjugate vaccine will potentially further protect the 
elderly. As a result of childhood immunization with 
7-valent pneumococcal conjugate vaccine, the Active 
Bacterial Core Surveillance data demonstrated a herd 
effect in the elderly and a reduction by 49% (16.4 to 
8.4 cases per 100,000) of antimicrobial-resistant 
(penicillin non-susceptible S. pneumoniae) invasive 
pneumococcal disease [22]. It has been recognized 
that in these studies, the most resistant strains were 
6B, 9V, 9A, 14, 19F and 23F, all of which were cov-
ered by the 7-valent pneumococcal conjugate vaccine. 
However, the emergence of non-7-valent pneumo-
coccal conjugate vaccine serotypes such as 19A [23], 
reveals the potential for serotype switching and in 
fact reverse the herd effect. Therefore, it is important 
that future vaccines increase the number of strains they 
target to reduce this possibility. Indeed, studies are now 
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Figure 3. The vaccine herd effect on invasive pneumococcal diseases 
in the USA after introduction of the 7-valent pneumococcal conjugate 
vaccine in children aged � 2 y in 2000 (adapted from Whitney 
et al. [21]).
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underway to determine the potential impact of the 
13-valent pneumococcal conjugate vaccine on the herd 
effect, as the 13-valent vaccine has recently replaced 
the 7-valent vaccine in many countries.   

 Herd effects in infl uenza vaccination 

 Seasonal infl uenza is a major cause of mortality result-
ing in an estimated 36,000 deaths annually in the USA 
alone [24]. The annual vaccination policy against 
seasonal infl uenza in most countries has been focused 
on protecting groups at high risk for complications of 
infl uenza, including the elderly, pregnant women, young 
children, and individuals with chronic diseases. 

 However, vaccinating high-risk populations is 
unlikely to reduce the burden of seasonal epidemics, 
because these groups represent only a fraction of the 
population among whom the virus spreads [25]. In 
addition, the attack rates in these groups are relatively 
low (8.8 – 13.5 per 100 persons for age  � 65 y). How-
ever, the attack rate is 25 per 100 persons in children 
aged 5 – 9 y and can reach 40 per 100 persons during 
pandemics, as experienced during 1918 – 19 [25]. 

 Another challenge with only vaccinating high-risk 
groups is that the vaccines may not work as well in 
these at-risk populations. The effi cacy of the infl uenza 
vaccine is dependent on the immunological status of 
the specifi c population being vaccinated and on the 
type of vaccine. For example, in healthy children, pooled 
estimates suggest that the live attenuated vaccine leads 
to a 79% effi cacy (absolute risk reduction (ARR) 
152.4 per 1000, number needed to treat (NNT) 6.6 
persons) for reducing laboratory-confi rmed infl uenza 
with 38% effi cacy for reducing symptoms [26]. In 
contrast, in the elderly, no signifi cant direct benefi t 
of routine inactivated trivalent infl uenza vaccine was 
observed against infl uenza (RR 1.04, 95% CI 0.43 –
 2.51) [26]. Of note, however, well-matched vaccines 
prevented complications in residents of long-term 
care facilities (vaccine effi cacy (VE) of hospital admis-
sion 45%, 95% CI 0.16 – 0.64; all-cause mortality 60%, 
95% CI 0.23 – 0.79) [27]. It is likely that the relative 
ineffectiveness of inactivated infl uenza vaccine in the 
elderly population is due to immune senescence, a 
waning of the immune system with age [28,29]. 

 The fact that groups at the highest risk of com-
plications from infection often benefi t the least from 
the vaccine is an important public health and scien-
tifi c challenge. Providing an indirect benefi t to these 
groups by vaccinating those who respond well to vac-
cines is one way to mitigate this public health chal-
lenge. Data exist that a herd effect due to vaccination 
in children may help protect high-risk groups [30 – 32]. 
Recently, a cluster randomized study of trivalent 
inactivated infl uenza vaccination administered to 947 
children and adolescents in Hutterites colonies in 

Canada showed a dramatic herd effect. The protective 
effectiveness in non-recipients of study vaccine was 
61% (95% CI 0.08 – 0.83;  p   �  0.03) for reducing 
laboratory-confi rmed infl uenza (3.1% in unvacci-
nated adults of vaccinated colonies vs 7.6% in unvac-
cinated colonies; ARR 40.0 per 1000, NNT 25.0 
persons; Figure 4) [32]. Such data lead to other impor-
tant questions that still need to be answered, includ-
ing the cost-effectiveness of vaccinating healthy children, 
the minimum uptake of vaccine in children needed to 
show a herd effect, and whether universal infl uenza 
vaccination is cost-effective. As has been demonstrated 
by Finnish researchers, the infl uenza vaccine is cost-
effective when administered to children aged 6 – 13 y 
when considering the direct benefi ts of the vaccine [33]. 
Since there is now evidence that a benefi t of up to 60% 
effectiveness may be seen in unvaccinated individuals 
due to the herd effect [32], this argues for an even greater 
cost-effectiveness of immunizing children. 

 The Society for Healthcare Epidemiology of America 
recently released a statement that infl uenza vaccina-
tion of healthcare personnel is a core patient and 
healthcare personnel safety practice [34]. Whether 
vaccination of healthcare personnel can lead to a herd 
effect reducing laboratory-confi rmed infl uenza among 
patients is still inconclusive. Pooled data from a Cochrane 
review of 3 cluster randomized controlled trials showed 
no reduction of laboratory-confi rmed infl uenza (OR 
0.86, 95% CI 0.44 – 1.68;  p   �  0.66), lower respiratory 
tract infections, admission to hospital (OR 0.89, 95% 
CI 0.75 – 1.06), and deaths from pneumonia (OR 0.82, 
95% CI 0.45 – 1.49) in patients when healthcare per-
sonnel were vaccinated [35]. However, given that 
mathematical models suggest a herd effect [36], more 
rigorous studies need to be conducted.   

 Herd effects in meningococcal vaccination 

 Meningococcal meningitis causes devastating epide-
mics in sub-Saharan Africa where vaccine prevention 
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is most needed. Because most meningococcal infections 
are caused by 6 of the 13 known serogroups (A, B, 
C, W-135, X, Y), these epidemics are preventable by 
vaccine. In 1991, a school-based cluster randomi zed 
double-blind trial of a serogroup B meningococcal 
vaccine that involved 171,800 students resulted in a 
vaccine effi cacy of 71% [37]. Although this trial was 
performed in Norway, which had a high incidence 
of serogroup B meningococcal disease [38,39], it 
failed to demonstrate a reduction in meningococcal 
disease among unvaccinated children in the vacci-
nated clusters. Evidence of a vaccine herd effect was 
suggested after adoption of routine monovalent sero-
group C meningococcal vaccination in infants in 
England in 1999, where the incidence of meningo-
coccal serogroup C disease declined not only in 
the vaccine group, but also in unvaccinated groups 
(by 67% in those aged 1 – 17 y and 35% in those aged 
 � 25 y) [40]. During the same period, carriage of 
serogroup C meningococci was reduced by 66% 
( p   �  0.004) according to data collected from 14,064 
students aged 15 – 17 y at the time of vaccination, and 
16,583 students 1 y later [41]. 

 Although nasal carriage is the basic step for inva-
sive infection, the relationship between acquisition 
(carriage) and infection is not yet clear. Neisseria 
meningitidis commonly ( ∼ 10%) colonizes the human 
oropharyngeal mucosa, and asymptomatic carriage 
is perennial occurring with a high frequency in teen-
agers where there is substantial genetic diversity of 
strains that are isolated [42]. Symptomatic infections 
on the other hand are seasonal and occur more com-
monly in younger children [42]. Quadrivalent (A, C, 
Y, W-135) vaccines are licensed in the USA for those 
aged 11 – 18 y and in persons aged 2 – 55 y who are at 
elevated risk for invasive meningococcal disease [43]. 
Active surveillance in the USA for invasive N. men-
ingitidis during 1998 – 2007 showed a 64.1% reduc-
tion in the annual incidence, from 0.92 cases per 
100,000 population in 1998 to 0.33 cases per 100,000 
population in 2007 [44].   

 Herd effects in rotavirus vaccination 

 Rotavirus is now the most important cause of gas-
troenteritis in young children (age  �  5 y) [45]. Since 
natural infection caused by a single serotype in infancy 
results in protection against subsequent infection by 
both homotypic and heterotypic viruses [46], vaccina-
tion against certain serotypes alone might reduce the 
burden of rotavirus infection. Several vaccines have 
proven effi cacy and safety [47]. 

 In addition, a herd benefi t of rotavirus vaccine is 
suggested by laboratory-based surveillance data [48] and 
mathematical modelling [49]. With an estimated vac-
cination rate of  ∼ 50% in the USA with pentavalent 

rotavirus vaccine, an 87% reduction in cases was observed 
from the hospital-based population surveillance dur-
ing the outbreak seasons following introduction of the 
vaccine. According to the mathematical models, the 
predicted additional protection of rotavirus-related 
gastroenteritis by vaccine herd effect was 25%, 22%, 
and 20% with vaccine uptake rates of 70%, 90%, and 
95%, respectively. A herd benefi t was also suggested 
in Nicaragua by observing the reduction of acute 
gastroenteritis following adoption of free rotavirus 
vaccine for all eligible children [50]. The World Health 
Organization recently recommended that rotavirus 
vaccine be included in the immunization programmes 
of countries where data on vaccine effi cacy suggest 
a signifi cant public health impact. However, since the 
highest mortality rates occur in sub-Saharan Africa 
and South Asia, further evidence of direct and indirect 
effects should be sought in these countries [51].   

 Potential herd effects in human papillomavirus 
(HPV) vaccination 

 Human papillomavirus (HPV), although not a noti-
fi able disease, is considered the most common agent 
of sexually transmitted infection given the high global 
incidence of HPV DNA in sexually active women 
[52]. A meta-analysis of 157,879 women with nor-
mal cervical cytology approximates the prevalence of 
HPV DNA to be 10.4% (95% CI 10.2 – 10.7%) [53]. 
Persistent HPV infection is the greatest risk factor 
for the development of high-grade precancerous lesions 
or invasive cervical cancer. The burden of HPV infec-
tion, along with cervical cancer mortality, appears to 
be even higher in developing countries [54]. Even 
within the context of a decreasing incidence of cervi-
cal cancer in resource-rich countries, where effective 
screening programmes and promotion of condom use 
are in place, vaccination against certain subtypes of 
HPV has proven effective in the prevention of the HPV 
infection and precancerous cervical disease [55]. The 
direct effect was supported by a meta-analysis of 
6 randomized controlled studies, showing a reduced 
frequency of high-grade cervical lesion by an OR of 
0.14 (95% CI 0.09 – 0.21) [56]. 

 Although these vaccines are recommended in devel-
oped countries, the fi eld effi cacy and indirect bene-
fi ts, including the herd effect of HPV vaccination, 
remain unknown. There is still debate about the cost-
effectiveness of such expensive vaccines compared to 
the usual screening and promotion of condom use in 
resource-limited countries [57]. However, with the 
high effi cacy of the vaccine against cervical cancer, a 
vaccine herd effect might be expected, especially in 
high endemic regions. At present, a benefi t has only 
been shown through mathematical modelling [58]. 
Moreover, the effect of a vaccine herd effect in women 
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by vaccinating men, or vice versa, has not yet been 
proven.   

 Conclusions 

 In summary, we have shown that the benefi ts of many 
current vaccines extend beyond the direct benefi ts to 
indirect benefi ts, i.e. through the herd effect extend-
ing beyond targeted groups to other populations at 
high risk for complications. Nevertheless, gaps in our 
knowledge exist about how best to achieve herd immu-
nity. For example, it is unclear whether there are 
particular formulations that confer better herd immu-
nity than others; a prime example is whether herd 
immunity achieved through live attenuated infl uenza 
vaccine is superior to that achieved with inactivated 
vaccine. Another area where gaps in our knowledge 
exist is the optimal use of new vaccines. For example, 
there are several candidate vaccines for dengue in clin-
ical trials and strategies for how best to use them to 
establish herd immunity need to be developed. 
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